

- 1. Plant Design
- 2. Accident Progression
- 3. Radiological releases
- 4. Spent fuel pools
- 5. Sources of Information

Matthias Braun
PEPA4-G, AREVA-NP GmbH
Matthias.Braun@AREVA.com

AREVA

- Fukushima Daiichi (Plant I)
 - ♦ Unit I GE Mark I BWR (439 MW), Operating since 1971
 - ♦ Unit II-IV GE Mark I BWR (760 MW), Operating since 1974

en.wikipedia.org/wiki/Browns_Ferry_Nuclear_Power_Plant

The Fukushima Daiichi Incident 1. Plant Design

Building structure

Concrete Building

♦ Steel-framed Service Floor

Containment

Pear-shaped Dry-Well

Torus-shaped Wet-Well

Service Floor

Lifting the Containment closure head

- Reactor Service Floor (Steel Construction)
- Concrete Reactor Building (secondary Containment)

Fresh Steam line

Main Feedwater

- Reactor Core
- Reactor Pressure Vessel
- Containment (Dry well)
- Containment (Wet Well) / Condensation Chamber

- 2. Accident progression
- ► 11.3.2011 14:46 Earthquake
 - Magnitude 9
 - Power grid in northern Japan fails
 - Reactors itself are mainly undamaged
- SCRAM
 - Power generation due to Fission of Uranium stops
 - Heat generation due to radioactive **Decay of Fission Products**
 - After Scram ~6%
 - ~1% After 1 Day
 - After 5 Days ~0.5%

- Containment Isolation
 - Closing of all non-safety related
 Penetrations of the containment
 - Cuts off Machine hall
 - If containment isolation succeeds, a large early release of fission products is highly unlikely
- Diesel generators start
 - Emergency Core cooling systems are supplied
- Plant is in a stable save state

- 2. Accident progression
- ► 11.3. 15:41 Tsunami hits the plant
 - Plant Design for Tsunami height of up to 6.5m
 - Actual Tsunami height >7m
 - Flooding of
 - Diesel Generators and/or
 - Essential service water building cooling the generators
- Station Blackout
 - Common cause failure of the power supply
 - Only Batteries are still available
 - Failure of all but one Emergency core cooling systems

- Reactor Core Isolation Pump still available
 - Steam from the Reactor drives a Turbine
 - Steam gets condensed in the Wet-Well
 - Turbine drives a Pump
 - Water from the Wet-Well gets pumped in Reactor
 - Necessary:
 - Battery power
 - Temperature in the wet-well must be below 100℃
- As there is no heat removal from the building, the Core isolation pump cant work infinitely

- 2. Accident progression
- Reactor Isolation pump stops
 - 11.3. 16:36 in Unit 1 (Batteries empty)
 - 14.3. 13:25 in Unit 2 (Pump failure)
 - 13.3. 2:44 in Unit 3 (Batteries empty)
- Decay Heat produces still steam in Reactor pressure Vessel
 - Pressure rising
- Opening the steam relieve valves
 - Discharge Steam into the Wet-Well
- Descending of the Liquid Level in the Reactor pressure vessel

- 2. Accident progression
- Reactor Isolation pump stops
 - 11.3. 16:36 in Unit 1 (Batteries empty)
 - 14.3. 13:25 in Unit 2 (Pump failure)
 - 13.3. 2:44 in Unit 3 (Batteries empty)
- Decay Heat produces still steam in Reactor pressure Vessel
 - Pressure rising
- Opening the steam relieve valves
 - Discharge Steam into the Wet-Well
- Descending of the Liquid Level in the Reactor pressure vessel

- 2. Accident progression
- Reactor Isolation pump stops
 - 11.3. 16:36 in Unit 1 (Batteries empty)
 - 14.3. 13:25 in Unit 2 (Pump failure)
 - 13.3. 2:44 in Unit 3 (Batteries empty)
- Decay Heat produces still steam in Reactor pressure Vessel
 - Pressure rising
- Opening the steam relieve valves
 - Discharge Steam into the Wet-Well
- Descending of the Liquid Level in the Reactor pressure vessel

- 2. Accident progression
- Reactor Isolation pump stops
 - 11.3. 16:36 in Unit 1 (Batteries empty)
 - 14.3. 13:25 in Unit 2 (Pump failure)
 - 13.3. 2:44 in Unit 3 (Batteries empty)
- Decay Heat produces still steam in Reactor pressure Vessel
 - Pressure rising
- Opening the steam relieve valves
 - Discharge Steam into the Wet-Well
- Descending of the Liquid Level in the Reactor pressure vessel

- ► Reactor Isolation pump stops
 - 11.3. 16:36 in Unit 1 (Batteries empty)
 - 14.3. 13:25 in Unit 2 (Pump failure)
 - 13.3. 2:44 in Unit 3 (Batteries empty)
- Decay Heat produces still steam in Reactor pressure Vessel
 - Pressure rising
- Opening the steam relieve valves
 - Discharge Steam into the Wet-Well
- Descending of the Liquid Level in the Reactor pressure vessel

- Measured, and here referenced Liquid level is the collapsed level. The actual liquid level lies higher due to the steam bubbles in the liquid
- ~50% of the core exposed
 - Cladding temperatures rise, but still no significant core damage
- ► ~2/3 of the core exposed
 - ◆ Cladding temperature exceeds ~900℃
 - Balooning / Breaking of the cladding
 - Release of fission products form the fuel rod gaps

- ► ~3/4 of the core exposed
 - ◆ Cladding exceeds ~1200℃
 - Zirconium in the cladding starts to burn under Steam atmosphere
 - \bullet Zr + 2H₂0 ->ZrO₂ + 2H₂
 - Exothermal reaction further heats the core
 - Generation of hydrogen
 - Unit 1: 300-600kg
 - Unit 2/3: 300-1000kg
 - Hydrogen gets pushed via the wet-well, the wet-well vacuum breakers into the dry-well

2. Accident progression

≥ at ~1800°C

[Unit 1,2,3]

- Melting of the Cladding
- Melting of the steel structures
- ≥ at ~2500°C

[Block 1,2]

- Breaking of the fuel rods
- debris bed inside the core
- ▶ at ~2700°C

[Block 1]

- Melting of Uranium-Zirconium eutectics
- Restoration of the water supply stops accident in all 3 Units
 - Unit 1: 12.3. 20:20 (27h w.o. water)
 - Unit 2: 14.3. 20:33 (7h w.o. water)
 - Unit 3: 13.3. 9:38 (7h w.o. water)

- 2. Accident progression
- Release of fission products during melt down
 - Xenon, Cesium, Iodine,...
 - Uranium/Plutonium remain in core
 - Fission products condensate to airborne Aerosols
- Discharge through valves into water of the condensation chamber
 - Pool scrubbing binds a fraction of Aerosols in the water
- Xenon and remaining aerosols enter the Dry-Well
 - Deposition of aerosols on surfaces further decontaminates air

- Containment
 - Last barrier between Fission
 Products and Environment
 - ♦ Wall thickness ~3cm
 - Design Pressure 4-5bar
- Actual pressure up to 8 bars
 - Normal inert gas filling (Nitrogen)
 - Hydrogen from core oxidation
 - Boiling condensation chamber (like a pressure cooker)
- Depressurization of the containment
 - Unit 1: 12.3. 4:00
 - Unit 2: 13.3 00:00
 - Unit 3: 13.3. 8.41

- Positive und negative Aspects of depressurizing the containment
 - Removes Energy from the Reactor building (only way left)
 - Reducing the pressure to ~4 bar
 - Release of small amounts of Aerosols (lodine, Cesium ~0.1%)
 - Release of all noble gases
 - Release of Hydrogen
- Gas is released into the reactor service floor
 - Hydrogen is flammable

- ▶ Unit 1 und 3
 - Hydrogen burn inside the reactor service floor
 - Destruction of the steel-frame roof
 - Reinforced concrete reactor building seems undamaged
 - Spectacular but minor safety relevant

▶ Unit 2

- Hydrogen burn inside the reactor building
- Probably damage to the condensation chamber (highly contaminated water)
- Uncontrolled release of gas from the containment
- Release of fission products
- Temporal evacuation of the plant
- High local dose rates on the plant site due to wreckage hinder further recovery work
- No clear information's why Unit 2 behaved differently

- Current status of the Reactors
 - ◆ Core Damage in Unit 1,2, 3
 - Building damage due to various burns Unit 1-4
 - Reactor pressure vessels floode in all Units with mobile pumps
 - At least containment in Unit 1 flooded
- Further cooling of the Reactors by releasing steam to the atmospher
- Only small further releases of fission products can be expected

- 3. Radiological releases
- Directly on the plant site
 - Before Explosion in Unit Block 2
 - Below 2mSv / h
 - Mainly due to released radioactive noble gases
 - Measuring posts on west side. Maybe too small values measured due to wind
 - After Explosion in Unit 2 (Damage of the Containment)
 - Temporal peak values 12mSv / h
 - (Origin not entirely clear)
 - Local peak values on site up to 400mSv /h (wreckage / fragments?)
 - Currently stable dose on site at 5mSv /h
 - Inside the buildings a lot more
 - Limiting time of exposure of the workers necessary

The Fukushima Daiichi Incident 3. Radiological releases

The Fukushima Daiichi Incident 3. Radiological releases

- Outside the Plant site
 - As reactor building mostly intact
 reduced release of Aerosols (not Chernobyl-like)
 - Fission product release in steam
 fast Aerosol grows, large fraction falls down in the proximity of the plant
 - Main contribution to the radioactive dose outside plant are the radioactive noble gases
 - Carried / distributed by the wind, decreasing dose with time
 - No "Fall-out" of the noble gases, so no local high contamination of soil
- ~20km around the plant
 - Evacuations were adequate
 - Measured dose up to 0.3mSv/h for short times
 - Maybe destruction of crops / dairy products this year
 - Probably no permanent evacuation of land necessary

The Fukushima Daiichi Incident 3. Radiological releases

The Fukushima Daiichi Incident 4. Spend fuel pools

- Spend fuel stored in Pool on Reactor service floor
 - Due to maintenance in Unit 4 entire core stored in Fuel pool
 - Dry-out of the pools
 - Unit 4: in 10 days
 - Unit 1-3,5,6 in few weeks
 - Leakage of the pools due to Earthquake?
- Consequences
 - Core melt "on fresh air "
 - Nearly no retention of fission products
 - Large release

The Fukushima Daiichi Incident 4. Spend fuel pools

- Spend fuel stored in Pool on Reactor service floor
 - Due to maintenance in Unit 4 entire core stored in Fuel pool
 - Dry-out of the pools
 - Unit 4: in 10 days
 - Unit 1-3,5,6 in few weeks
 - Leakage of the pools due to Earthquake?
- Consequences
 - Core melt "on fresh air "
 - Nearly no retention of fission products
 - Large release

4. Spend fuel pools

- Spend fuel stored in Pool on Reactor service floor
 - Due to maintenance in Unit 4 entire core stored in Fuel pool
 - Dry-out of the pools
 - Unit 4: in 10 days
 - Unit 1-3,5,6 in few weeks
 - Leakage of the pools due to Earthquake?
- Consequences
 - Core melt "on fresh air "
 - Nearly no retention of fission products
 - Large release
- ► It is currently unclear if release from fuel pool already happened

The Fukushima Daiichi Incident 5. Sources of Information

- Good sources of Information
 - Gesellschaft für Reaktorsicherheit [GRS.de]
 - Up to date
 - Radiological measurements published
 - German translation of japanese/englisch web pages
 - Japan Atomic Industrial Forum [jaif.or.jp/english/]
 - Current Status of the plants
 - Measurement values of the reactors (pressure liquid level)
 - Tokyo Electric Power Company [Tepco.co.jp]
 - Status of the recovery work
 - Casualties
- ▶ Way too few information are released by TEPCO, the operator of the plant

